Structural Insights into the Association of Hif1 with Histones H2A-H2B Dimer and H3-H4 Tetramer.
نویسندگان
چکیده
Histone chaperones are critical for guiding specific post-transcriptional modifications of histones, safeguarding the histone deposition (or disassociation) of nucleosome (dis)assembly, and regulating chromatin structures to change gene activities. HAT1-interacting factor 1 (Hif1) has been reported to be an H3-H4 chaperone and to be involved in telomeric silencing and nucleosome (dis)assembly. However, the structural basis for the interaction of Hif1 with histones remains unknown. Here, we report the complex structure of Hif1 binding to H2A-H2B for uncovering the chaperone specificities of Hif1 on binding to both the H2A-H2B dimer and the H3-H4 tetramer. Our findings reveal that Hif1 interacts with the H2A-H2B dimer and the H3-H4 tetramer via distinct mechanisms, suggesting that Hif1 is a pivotal scaffold on alternate binding of H2A-H2B and H3-H4. These specificities are conserved features of the Sim3-Hif1-NASP interrupted tetratricopeptide repeat proteins, which provide clues for investigating their potential roles in nucleosome (dis)assembly.
منابع مشابه
Histones H2A/H2B inhibit the interaction of transcription factor IIIA with the Xenopus borealis somatic 5S RNA gene in a nucleosome.
A Xenopus borealis somatic 5S RNA gene was assembled with either the complete octamer of histones, (H2A/H2B/H3/H4)2, or the (H3/H4)2 tetramer of histones that comprises the central protein kernel of the nucleosome. Gel-mobility shifts, DNase I protection, and immunoblotting assays demonstrate that the class III transcription factor IIIA (TFIIIA) readily interacts with 5S DNA associated with the...
متن کاملEnhanced stability of histone octamers from plant nucleosomes: role of H2A and H2B histones.
Gel filtration and sedimentation studies have previously established that the vertebrate animal core histone octamer is in equilibrium with an (H3-H4)2 tetramer and an H2A-H2B dimer [Eickbush, T. H., & Moudrianakis, E. N. (1978) Biochemistry 17, 4955-4964; Godfrey, J. E., Eickbush, T. H., & Moudrianakis, E. N. (1980) Biochemistry 19, 1339-1346]. We have investigated the core histone octamer of ...
متن کاملNucleosome accessibility governed by the dimer/tetramer interface
Nucleosomes are multi-component macromolecular assemblies which present a formidable obstacle to enzymatic activities that require access to the DNA, e.g. DNA and RNA polymerases. The mechanism and pathway(s) by which nucleosomes disassemble to allow DNA access are not well understood. Here we present evidence from single molecule FRET experiments for a previously uncharacterized intermediate s...
متن کاملThe histone H3/H4.N1 complex supplemented with histone H2A-H2B dimers and DNA topoisomerase I forms nucleosomes on circular DNA under physiological conditions.
We have fractionated the whole cell extract of Xenopus oocytes (oocyte S-150) and isolated the endogenous components required for DNA supercoiling and nucleosome formation. Histone H2B and the three oocyte-specific H2A proteins were purified as free histones. Histones H3 and H4 were purified 100-fold in a complex with the acidic protein N1. In the presence of DNA topoisomerase I or II, histone ...
متن کاملNonhistone Scm3 and Histones CenH3-H4 Assemble the Core of Centromere-Specific Nucleosomes
The budding yeast histone H3 variant, Cse4, replaces conventional histone H3 in centromeric chromatin and, together with centromere-specific DNA-binding factors, directs assembly of the kinetochore, a multiprotein complex mediating chromosome segregation. We have identified Scm3, a nonhistone protein that colocalizes with Cse4 and is required for its centromeric association. Bacterially express...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Structure
دوره 24 10 شماره
صفحات -
تاریخ انتشار 2016